Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level.

نویسندگان

  • M Kern
  • J A Wells
  • J M Stephens
  • C W Elton
  • J E Friedman
  • E B Tapscott
  • P H Pekala
  • G L Dohm
چکیده

Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM.

Studies of experimental diabetes in rodents induced by the beta-cell toxin streptozocin have shown that the insulin-resistant glucose transport of peripheral tissues (muscle and adipose) in these animals can be ascribed in part to a pretranslational reduction of the major insulin-sensitive glucose transporter (GLUT4) in these tissues. Because a central feature of non-insulin-dependent diabetes ...

متن کامل

Physiological regulation of glucose transporter (GLUT4) protein content in brown trout (Salmo trutta) skeletal muscle.

In brown trout, red and white skeletal muscle express the insulin-regulatable glucose transporter 4 (btGLUT4). We have previously shown that the mRNA expression of btGLUT4 in red muscle, but not white muscle, is altered under experimental conditions designed to cause changes in the plasma levels of insulin, such as fasting, insulin and arginine administration. In order to determine whether chan...

متن کامل

Glucose-transporter (GLUT4) protein content in oxidative and glycolytic skeletal muscles from calf and goat.

It is well accepted that skeletal muscle is a major glucose-utilizing tissue and that insulin is able to stimulate in vivo glucose utilization in ruminants as in monogastrics. In order to determine precisely how glucose uptake is controlled in various ruminant muscles, particularly by insulin, this study was designed to investigate in vitro glucose transport and insulin-regulatable glucose-tran...

متن کامل

Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise

Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...

متن کامل

Differential regulation of glucose transporter activity and expression in red and white skeletal muscle.

Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 270 2  شماره 

صفحات  -

تاریخ انتشار 1990